概率

什么是或然率

概率,或然率(Probability)
  或然率或然比,也叫概率和机会率:是对可能性在量上的一种科学说明和测定。它是要测定的偶然事件的数目与全部可能发生的偶然事件的总数之间的比率。如果n是可能发生的偶然事件的总数,而m是要测定的偶然事件的数目,那么,或然率就是m/n。m和n的比值在零和一之间,如果或然率等于零,就说明没有可能或不可能;如果或然率等于一,就说明有百分之百的可能,这时的可能就完全成了必然。测定或然率是人们实践的需要,目前在自然科学和社会科学中得到广泛的应用。

或然率的理论


  或然率有下列两种理论:

  一、理论或然率(Theoretical Probability):即根据事件本性推理而得的或然率,又称先天(Priori)或然率。例如:一枚硬币有正反两面,将其抛掷,其正面朝上之或然率,不待试验即可推知其为二分之一;又例如:若一摸彩箱中共有彩券三十张,其中有奖之彩券共十张,则可推知其中奖之或然率为三分之一。

  二、经验或然率(Empirical Probability):即根据实际现象归纳众多次数而得之或然率。例如:将一枚硬币抛掷一百次,若其出现正面朝上之次数为五十二次,即称抛掷该枚硬币出现正面朝上之或然率为52/100=0.52;又例如:若甲县某年内共出生婴儿四千八百六十五人,其中男婴为二千五百三十四人,则该县男婴出生之或然率即为2534/4865=0.52。此种或然率又称后天的(Posteriori)或然率。

或然率的公理


 

  或然率具有三个基本公理:

  公理1:P{A}≥0 P{A}代表事件A发生的或然率,这个公理表示一个事件发生的或然率必须大于0或等于0。如果一个事件A可能发生,那么它的或然率P{A}必然大于0,假使事件A不可能出现,则它发生的或然率等干0。换句话说,任何一事件发生的或然率不可能是负值。

  公理2:P{S}=1,S代表所有可能发生的全部事件,P{S}代表它们发生的或然率。这个公理表示在所有可能发生的各个事件中,必然有一个事件发生的或然率等于1。例如一个硬币只有正,反两面,投掷的结果不是正面就是反面,所有可能发生的事件共有二个,一个是出现正面,一个是出现反面。用S代表所有可能发生的事件的全体,那么用A表示正面,用表示反面,这样S与A、三者的关系可以表示为(U这个符号读作“并”,意思指“或者”即A或至少有一个发生。在这里的作用与加法符号相同)。这样投掷一枚硬币出现正面与反面的或然率就可以写作

  假设这样一些事件不能并存,互相排斥,就可以用表示事件同时发生不存在,也就是等事件同时出现是不可能的。(这个符号读作“交”表示“乘积”指A1A2A3等事件同时发生)。由此可得:

  公理3:b2b6.png">

  公理3表示这些事件中任一事件都不能与其它事件同时并存,则A1A2A3事件发生的或然率等于各个事件发生或然率之和。

  例如;在一个袋中有各色的小球10个,仅知道其中有红球A1一个,白球A2二个,兰球A3三个,这三个事件是互相排斥,也就是说是白球就不可能是红球,是红球就不可能是兰球。如果从袋中抽取一个球,问这个球是红、白、兰三色中任何一色时的或然率为多少?根据公理3得


 

概率的频率定义

 
  随着人们遇到问题的复杂程度的增加,等可能性逐渐暴露出它的弱点,特别是对于同一事件,可以从不同的等可能性角度算出不同的概率,从而产生了种种悖论。另一方面,随着经验的积累,人们逐渐认识到,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示一定的稳定性。R.von米泽斯把这个固定数定义为该事件的概率,这就是概率的频率定义。从理论上讲,概率的频率定义是不够严谨的。A.H.柯尔莫哥洛夫于1933年给出了概率的公理化定义。
概率的严格定义
  设E是随机试验,S是它的样本空间。对于E的每一事件A赋于一个实数,记为P(A),称为事件A的概率。这里P(·)是一个集合函数,P(·)要满足下列条件:
(1)非负性:对于每一个事件A,有P(A)≥0;
(2)规范性:对于必然事件S,有P(S)=1;
(3)可列可加性:设A1,A2……是两两互不相容的事件,即对于i≠j,Ai∩Aj=φ,(i,j=1,2……),则有P(A1∪A2∪……)=P(A1)+P(A2)+……

概率的古典定义

 
  如果一个试验满足两条:
(1)试验只有有限个基本结果
(2)试验的每个基本结果出现的可能性是一样的。
这样的试验,成为古典试验。
对于古典试验中的事件A,它的概率定义为:
P(A)=m/n,n表示该试验中所有可能出现的基本结果的总数目。m表示事件A包含的试验基本结果数。这种定义概率的方法称为概率的古典定义。

概率的统计定义

 
  在一定条件下,重复做n次试验,nA为n次试验中事件A发生的次数,如果随着n逐渐增大,频率nA/n逐渐稳定在某一数值p附近,则数值p称为事件A在该条件下发生的概率,记做P(A)=p。这个定义成为概率的统计定义。
在历史上,第一个对“当试验次数n逐渐增大,频率nA稳定在其概率p上”这一论断给以严格的意义和数学证明的是早期概率论史上最重要的学者雅各布·伯努利(Jacob Bernoulli,公元1654年~1705年)。
从概率的统计定义可以看到,数值p就是在该条件下刻画事件A发生可能性大小的一个数量指标
由于频率nA/n总是介于0和1之间,从概率的统计定义可知,对任意事件A,皆有0≤P(A)≤1,P(Ω)=1,P(Φ)=0。
Ω、Φ分别表示必然事件(在一定条件下必然发生的事件)和不可能事件(在一定条件下必然不发生的事件)。

两大类别

 
古典概率相关
  古典概率讨论的对象局限于随机试验所有可能结果为有限个等可能的情形,即基本空间由有限个元素或基本事件组成,其个数记为n,每个基本事件发生的可能性是相同的。若事件A包含m个基本事件,则定义事件A发生的概率为p(A)=m/n,也就是事件A发生的概率等于事件A所包含的基本事件个数除以基本空间的基本事件的总个数,这是P.-S.拉普拉斯的古典概率定义,或称之为概率的古典定义。历史上古典概率是由研究诸如掷骰子一类赌博游戏中的问题引起的。计算古典概率,可以用穷举法列出所有基本事件,再数清一个事件所含的基本事件个数相除,即借助组合计算可以简化计算过程。
几何概率相关
  几何概率若随机试验中的基本事件有无穷多个,且每个基本事件发生是等可能的,这时就不能使用古典概率,于是产生了几何概率。几何概率的基本思想是把事件与几何区域对应,利用几何区域的度量来计算事件发生的概率,布丰投针问题是应用几何概率的一个典型例子。
概率论发展的早期,人们就注意到古典概率仅考虑试验结果只有有限个的情况是不够的,还必须考虑试验结果是无限个的情况。为此可把无限个试验结果用欧式空间的某一区域S表示,其试验结果具有所谓“均匀分布”的性质,关于“均匀分布”的精确定义类似于古典概率中“等可能”只一概念。假设区域S以及其中任何可能出现的小区域A都是可以度量的,其度量的大小分别用μ(S)和μ(A)表示。如一维空间的长度,二维空间的面积,三维空间的体积等。并且假定这种度量具有如长度一样的各种性质,如度量的非负性、可加性等。
◆几何概率的严格定义
设某一事件A(也是S中的某一区域),S包含A,它的量度大小为μ(A),若以P(A)表示事件A发生的概率,考虑到“均匀分布”性,事件A发生的概率取为:P(A)=μ(A)/μ(S),这样计算的概率称为几何概率。
◆若Φ是不可能事件,即Φ为Ω中的空的区域,其量度大小为0,故其概率P(Φ)=0。
独立试验序列
  假如一串试验具备下列三条:
(1)每一次试验只有两个结果,一个记为“成功”,一个记为“失败”,P{成功}=p,P{失败}=1-p=q
(2)成功的概率p在每次试验中保持不变
(3)试验与试验之间是相互独立的。
则这一串试验称为独立试验序列,也称为bernoulli概型。
必然事件与不可能事件
  在一个特定的随机试验中,称每一可能出现的结果为一个基本事件,全体基本事件的集合称为基本空间。随机事件(简称事件)是由某些基本事件组成的,例如,在连续掷两次骰子的随机试验中,用Z,Y分别表示第一次和第二次出现的点数,Z和Y可以取值1、2、3、4、5、6,每一点(Z,Y)表示一个基本事件,因而基本空间包含36个元素。“点数之和为2”是一事件,它是由一个基本事件(1,1)组成,可用集合{(1,1)}表示“点数之和为4”也是一事件,它由(1,3),(2,2),(3,1)3个基本事件组成,可用集合{(1,3),(3,1),(2,2)}表示。如果把“点数之和为1”也看成事件,则它是一个不包含任何基本事件的事件,称为不可能事件。在试验中此事件不可能发生。如果把“点数之和小于40”看成一事件,它包含所有基本事件,在试验中此事件一定发生,所以称为必然事件。若A是一事件,则“事件A不发生”也是一个事件,称为事件A的对立事件。实际生活中需要对各种各样的事件及其相互关系、基本空间中元素所组成的各种子集及其相互关系等进行研究
【随机事件,基本事件,等可能事件,互斥事件,对立事件】
在一定的条件下可能发生也可能不发生的事件,叫做随机事件。
一次实验连同其中可能出现的每一个结果称为一个基本事件。
通常一次实验中的某一事件由基本事件组成。如果一次实验中可能出现的结果有n个,即此实验由n个基本事件组成,而且所有结果出现的可能性都相等,那么这种事件就叫做等可能事件。
不可能同时发生的两个事件叫做互斥事件。
必有一个发生的互斥事件叫做对立事件。
即P(必然事件)=1
P(可能事件)=(0-1)(可以用分数)
P(不可能事件)=0
性质
  性质1.P(Φ)=0.
性质2(有限可加性).当n个事件A1,…,An两两互不相容时: P(A1∪。。.∪An)=P(A1)+...+P(An).
性质3.对于任意一个事件A:P(A)=1-P(非A).
性质4.当事件A,B满足A包含于B时:P(B-A)=P(B)-P(A),P(A)≤P(B).
性质5.对于任意一个事件A,P(A)≤1.
性质6.对任意两个事件A和B,P(B-A)=P(B)-P(AB).
性质7(加法公式).对任意两个事件A和B,P(A∪B)=P(A)+P(B)-P(A∩B).
(注:A后的数字1,2,...,n都表示下标.)
频率与概率
  对事件发生可能性大小的量化引入“概率”.
“统计规律性”
独立重复试验总次数n,事件A发生的频数μ,
事件A发生的频率Fn(A)=μ/n,A的频率Fn(A)有没有稳定值?
如前人做过的掷硬币的试验(P.44下面表)
如果有就称频率μn的稳定值p为事件A发生的概率记作P(A)=p[概率的统计定义]
P(A)是客观的,而Fn(A)是依赖经验的。
统计中有时也用n很大的时候的Fn(A)值当概率的近似值。

三个基本属性

 
  1.[非负性]:任何事件A,P(A)≥0
2.[完备性]:P(Ω)=1
3.[加法法则]如事件A与B不相容,即如果AB=φ,则P(A+B)=P(A)+P(B)
加法法则
  如事件A与B不相容,A+B发生的时候,A与B两者之中必定而且只能发生其中之一。独立重复地做n次实验,如记事件A发生的频数为μA、频率为Fn(A) ,记事件B发生的频数为μB 、频率为Fn(B) ,事件A+B发生的频数为μA+B 、频率为Fn(A+B) ,易知:μA+B =μA +μB,∴Fn(A+B) = Fn(A) + Fn(B) ,它们的稳定值也应有:P(A+B)=P(A)+P(B)[加法法则]如事件A与B不相容,即如果AB=φ,则 P(A+B)=P(A)+P(B)即:两个互斥事件的和的概率等于它们的概率之和。请想一下:如A与B不是不相容,即相容的时候呢?进一步的研究得: P(A+B)=P(A)+P(B)-P(AB)这被人称为:“多退少补”!
模糊和概率
  1.是否不确定性就是随机性?似然比、概率是否代表了所有的不确定性?
Bayesian camp:概率是一种主观的先验知识,不是一种频率和客观测量值
Lindley:概率是对不确定性唯一有效并充分的描述,所有其他方法都是不充分的
相似:通过单位间隔[0,1]间的数来表述不确定性,都兼有集合、相关、联系、分布方面的命题
区别:对待。经典集合论,

代表概率上不可能的事件。而模糊建立在
(1)是否总是成立的?
考虑能否逻辑上或部分地违背“无矛盾定理”(Aristotle的三个‘思考定理’之一,同时排中定理同一
性定理这些都是非黑即白的经典定理。)模糊(矛盾)的产生,就是西方逻辑的结束
(2)是否可以推导条件概率算子?
经典集合论中:
模糊理论:考虑超集是其子集的子集性程
度,这是模糊集合的特有问题。
2.模糊和概率:是否与多少
模糊是事件发生的程度。随机是事件是否发生的不确定性。
例子:明天有20%的几率下小雨(包含复合的不确定性)
停车位问题
一个苹果在冰箱里的概率和半个苹果在冰箱里
事件倒转,地球演变恢复原点
模糊是一种确定的不定性(deterministic uncertainty),是物理现象的特性。用模糊代表不确定性的
结果将是震撼的,人们需要重新审视现实模型。

热门词条

应收账款 区域货币 区间估计 CPI(Consumer Price Index) 资本成本 单向定单 金融危机 认可 汇率 外汇通 外汇佣金 资产 经济 ISO 服务 增量成本 CFO 加工 MIT 什一税 租赁期 销售 股价反弹 SME REF 抽签偿还 技术 MG金融集团 空头陷阱 市场 美元 股利收入 中小企业 资本 美国 两会 中国股市 备付金率 价格 吊空 指数 股灾 葡萄牙币 pt 调至市价 下降三角形 清算 Writer 电子汇兑 FDI 税粮 Theta width peg MACD 巴塞尔资本协议 冲账 艾略特波段理论的含义 银行 管理 外汇交易法 贴现现金流 短期同业拆借 拔档 联系汇率制度 消费发展战略 延期付款汇票 Exposure 公司 短期国际商业贷款 阴烛 金融中介理论 不完全竞争市场理论 (金融) 标准普尔(S&P) 美国贝勒大学 正利差 汇差清算率 外汇 分期付款汇票 软通货 出口物价指数 选择权买方 集中竞价 百分比回撤 无记名汇票最低报价戴维·凯特标准·普尔 500指数抵押品持平德国工业产值德国消费者物价指数成本协同效益 非农就业人口 德国伊弗研究所景气调查 交易 持平 金融 道琼斯公用事业平均指数 指示汇票 产品竞争力 Quote 财务指标 盈利能力比率 外汇实盘交易方式 货币 外汇实盘交易指令 国际收支差额 BBC制度 什么是外汇市场的过分反应 货币期货交易 波浪理论与新闻价值性的关系 希腊德拉马克 南洋商业银行